游客
题文

已知函数,其中
(Ⅰ)当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

((本小题满分14分)
已知点是椭圆的右焦点,点分别是轴、轴上的动点,且满足.若点满足
(1)求点的轨迹的方程;
(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

((本小题满分14分)
如图,是圆的直径,点在圆上,于点
平面

(1)证明:
(2)求平面与平面所成的锐二面角的余弦值.

(本小题满分12分)
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

(本小题满分12分)
已知函数
(1)求的最小正周期;
(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值。

((本小题满分14分)
设数列是公差为的等差数列,其前项和为
(1)已知
(ⅰ)求当时,的最小值;
(ⅱ)当时,求证:
(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号