若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.
在三棱锥S中,,,,。 (1)证明。 (2)求侧面与底面所成二面角的大小。 (3)求异面直线SC与AB所成角的大小。
已知函数 (1)求反函数 (2)判断是奇函数还是偶函数并证明。
关于实数的不等式的解集依次为与,求使的的取值范围。
已知函数的图象经过A(0,1),且在该点处的切线与直线平行. (1)求b与c的值; (2)求上的最大值与最小值分别为M(a),N(a),求F(a)=M(a)-N(a)的表达式. (3)在)(2)的条件下,当a的区间上变化时,证明:
若方程内有解,实数a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号