某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.
已知点P(x1,y1),Q(x2,y2)是函数f(x)=sin(ωx+Φ)(ω>0,0<Φ<)图象上的任意两点,若|y1-y2|=2时,|x1-x2|的最小值为
,且函数f(x)的图象经过点(0,2),在△ABC中,角A,B,C的对边分别为a,b,c,且2sinAsinC+cos2B=1.
(1)求函数f(x)的解析式;
(2)求g(B)=f(B)+f(B+
)的取值范围.
(本小题满分14分) 已知函数在
处取得极值为
(1)求的值;
(2)若有极大值28,求
在
上的最大值。
(本小题满分13分)已知是等差数列,其前
项和为
,
是等比数列(
),且
,
(1)求数列与
的通项公式;
(2)记为数列
的前
项和,求
(本小题满分12分)已知函数
(1)求的最小正周期及其单调减区间;
(2)当时,求
的值域
(本小题满分12分)设向量.
(1)若,求
的值;
(2)设函数的最大值.