某校课外兴趣小组的学生为了给学校边的一口被污染的池塘治污,他们通过实验后决定在池塘中投放一种能与水中的污染物质发生化学反应的药剂.已知每投放个单位的药剂,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
若多次投放,则某一时刻水中的药剂浓度为各次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值.
设关于x的一元二次方程
(1)若是从0,1,2,3四个数中任取一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率。
(2)若是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
在△ABC中,设A、B、C的对边分别为a、b、c,向量
(1)求角A的大小;
(2)若的面积。
(本小题满分14分)
已知函数(b、c为常数)的两个极值点分别为
、
在点
处的切线为l2,其斜率为k2。
(1)若;
(2)若的取值范围。
(本小题满分14分)
已知过点A(—4,0)的动直线l与抛物线C:相交于B、C两点,当l的斜率是
(1)求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围。
19.(本小题满分14分)
在数列成等比数列。
(1)证明:数列是等差数列;
(2)求数列