已知椭圆C:的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
取值范围.
已知函数.
⑴求函数在
处的切线方程;
⑵当时,求证:
;
⑶若,且
对任意
恒成立,求k的最大值.
巳知椭圆的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.
⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
已知向量,函数
.
⑴设,x为某三角形的内角,求
时x的值;
⑵设,当函数
取最大值时,求cos2x的值.
学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有
改选A菜。用
分别表示第
个星期选A的人数和选B的人数.
⑴试用表示
,判断数列
是否成等比数列并说明理由;
⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?