游客
题文

已知函数的最小正周期为
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,求的大小.

科目 数学   题型 解答题   难度 中等
知识点: 西姆松定理
登录免费查看答案和解析
相关试题

如图,四边形ABCD为矩形,四边形ADEF为梯形,FEAD,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=2,点G为AC的中点.

(Ⅰ)求证:EG∥平面ABF;
(Ⅱ)求三棱锥B﹣AEG的体积.

设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=12.
(1)求数列{an}的通项公式;
(2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

已知函数f(x)=|x﹣4|﹣t,t∈R,且关于x的不等式f(x+2)≤2的解集为[﹣1,5].
(1)求t值;
(2)a,b,c均为正实数,且a+b+c=t,求证:++≥1.

在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心的极坐标为(),半径r=,点P的极坐标为(2,π),过P作直线l交圆C于A,B两点.
(1)求圆C的直角坐标方程;(2)求|PA|•|PB|的值.

如图,已知AB是⊙O的直径,CD是⊙O的切线,C为切点,连接AC,过点A作AD⊥CD于点D,交⊙O于点E.

(Ⅰ)证明:∠AOC=2∠ACD;(Ⅱ)证明:AB•CD=AC•CE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号