已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证: 直线l过定点,并求出该定点的坐标.
设函数,其中
(1)当时,讨论函数f(x)的单调性;
(2)若函数仅在
处有极值,求
的取值范围;
(3)若对于任意的,不等式
在[-1,1]上恒成立,求b的取值范围.
已知各项均为正数的数列前
项和为
,首项为
,且
成等差数列.
(1)求数列的通项公式;
(2)若,设
,求数列
的前
项和
.
已知函数为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(1)求的值;
(2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
已知对任意实数
恒成立;Q:函数
有两个不同的零点. 求使“P∧Q”为真命题的实数m的取值范围.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知,且满足
.
(1)求角A的大小;
(2)若||+||=||,试判断△ABC的形状.