如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛
扩建成一个更大的矩形花园
,要求:B在
上,D在
上,对角线
过C点,且矩形
的面积小于64平方米.
(Ⅰ)设长为
米,矩形
的面积为
平方米,试用解析式将
表示成
的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形
的面积最小?并求最小面积.
已知函数
(Ⅰ)讨论函数的单调性;
(II)若函数的图象在点
处的切线的倾斜角为
,对于任意的
,函数
在区间
上总不是单调函数,求
的取值范围;
(Ⅲ)求证:
如图,点分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.
(1)如果点的坐标为(4,4),求椭圆
的方程;
(2)试判断直线与椭圆
的公共点个数,并证明你的结论.
已知数列是各项均为正数的等差数列,其中
,且
成等比数列;数列
的前
项和为
,满足
.
(1)求数列、
的通项公式;
(2)如果,设数列
的前
项和为
,是否存在正整数
,使得
成立,若存在,求出
的最小值,若不存在,说明理由.
如图所示的多面体中,底面
为正方形,
//
//
,
,且
.
(Ⅰ)求证://
;
(Ⅱ)求多面体的体积
.
已知函数.
(Ⅰ)当时,求函数
的最大值;
(Ⅱ)若,求
的值.