已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:
![]() |
A |
B |
C |
A |
7 |
20 |
5 |
B |
9 |
18 |
6 |
C |
a |
4 |
b |
若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中数学成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.
(1)若在该样本中,数学成绩优秀率是30%,求a,b的值;
(2)在地理成绩为C等级的学生中,已知a≥10,b≥8,求数学成绩为A等级的人数比C等级的人数少的概率.
已知f(x) = ax + ,若求
的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足
=[f(x)+2f′(1)]
-ln(x+1)
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0,证明:f(x)>;
(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.
已知数列中,
,
,其前
项和
满足
.令
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求证:
(
).
设数列的各项均为正数,若对任意的正整数
,都有
成等差数列,且
成等比数列.
(Ⅰ)求证数列是等差数列;
(Ⅱ)如果,求数列
的前
项和。
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.