如图,已知椭圆:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.(12分)
(1)求椭圆的方程;
(2)求的最小值,并求此时圆
的方程;
(3)设点是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求证:
为定值.
(1)求动点的轨迹
的方程;
(2)已知圆过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于G、H不同的两点,求此直线斜率的取值范围;
(3)若点G在点F、H之间,且满足的取值范围。
(1)求证:平面平面
;
(2)求正方形的边长;
(3)求二面角的平面角的正切值.
已知点是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点的轨迹方程;
(2)已知点,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
直线经过两条直线
:
和
的交点,且分这两条直线与
轴围成的三角形面积为
两部分,求直线
的一般式方程。