已知椭圆,
、
是其左右焦点,离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2)若、
分别是椭圆长轴的左右端点,
为椭圆上动点,设直线
斜率为
,且
,求直线
斜率的取值范围;
(3)若为椭圆上动点,求
的最小值.
(本小题满分14分)如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中AC=3,AB=5,
(Ⅰ)求证:
(Ⅱ)求证:AC1//平面CDB1;
(Ⅲ)求三棱锥A1—B1CD的体积.
设计一幅宣传画,要求画面面积为,画面的宽与高的比为
,画面的上
各留的空白,左右各留
的空白,问怎样确定画面的高与宽的尺寸,能使宣传画
所用纸张面积最小?如果,那么
为何值时,能使宣传画所用纸张面积最小?
已知函数
(I)若函数的图象关于直线
对称,求a的最小值;
(II)若存在成立,求实数m的取值范围.
正实数数列
中,
,且
成等差数列.
(1) 证明数列
中有无穷多项为无理数;
(2)当
为何值时,
为整数,并求出使
的所有整数项的和.
已知抛物线
经过椭圆
的两个焦点.
(1) 求椭圆
的离心率;
(2) 设
,又
为
与
不在
轴上的两个交点,若
的重心在抛物线
上,求
和
的方程.