已知函数其中
为自然对数的底数,
.
(1)设,求函数
的最值;
(2)若对于任意的,都有
成立,求
的取值范围.
如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.
(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.
在直角坐标系xOy中,直线的参数方程为
(
为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以
轴正半轴为极轴)中,圆C的方程为ρ=2
sinθ.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A,B.若点
的坐标为(3,
),求
与
.
已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.
已知为复数,
为纯虚数,
,且
,求
.
(本小题满分12分)已知,其中
是自然常数,
(1)讨论时,
的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.