某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.
(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;
(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求
的分布列及
.
已知是定义在
上的奇函数,当
时,
,其中
是自然对数的底数.
(1)求的解析式;
(2)求的图象在点
处的切线方程.
集合,
(1)求;
(2)若,
求实数
的取值范围
设有关于x的一元二次方程。若a是从区间[0,3]内任取的一个数,b是从区间[0,2]内任取的一个数,求上述方程没有实根的概率。
(10分)将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:两数之积是6的倍数的概率;
(10分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测
试,将所得数据整理后,画出了频率分布直方图(如上图),图中从左到右各小长方形面积之
比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?