某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
已知函数 (1)若函数在上无零点,请你探究函数在上的单调性; (2)设,若对任意的,恒有成立,求实数的取值范围.
若满足,则称为的不动点. (1)若函数没有不动点,求实数的取值范围; (2)若函数的不动点,求的值; (3)若函数有不动点,求实数的取值范围.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (1)求证:面; (2)求二面角的大小的正弦值; (3)求点到面的距离.
在中,角所对的边为.已知,且. (1)求的值; (2)当时,求的面积.
设为等差数列的前项和,已知. (1)求数列的通项公式; (2)求证: .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号