某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1.
已知函数 (1)判断函数的奇偶性并证明; (2)若,证明:函数在区间(2,)上是增函数
已知全集U=,集合A={,集合B= 求(1) (2) () (3)
已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求 (Ⅰ)BC边上的中线AD所在的直线方程; (Ⅱ)△ABC的面积。
已知定义域为的函数是奇函数. (Ⅰ)求实数的值. (Ⅱ)用定义证明:在上是减函数. (III)已知不等式恒成立, 求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号