已知圆,若焦点在
轴上的椭圆
过点
,且其长轴长等于圆
的直径.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线
与
,
与圆
交于
、
两点,
交椭圆于另一点
,设直线
的斜率为
,求弦
长;
(3)求面积的最大值.
已知函数.
(1)当时,求曲线
在点
处的切线方程;
(2)当时,讨论
的单调性.
设函数.
(1)设,
,
,证明:
在区间
内存在唯一的零点;
(2)设,若对任意
、
,有
,求
的取值范围.
已知函数,其中
,
是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数
在R上是单调函数,探究函数
的单调性.
已知关于x的函数
(1)当时,求函数
的极值;
(2)若函数没有零点,求实数a取值范围.
对于函数,若在定义域存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数,试判断
是否为“局部奇函数”?并说明理由;
(2)设是定义在
上的“局部奇函数”,求实数
的取值范围.