对于函数,若在定义域存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数,试判断
是否为“局部奇函数”?并说明理由;
(2)设是定义在
上的“局部奇函数”,求实数
的取值范围.
(本小题满分12分)
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格。
(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。
(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;
(3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。
(本小题满分12分)已知函数.
(Ⅰ)求函数的最大值,并写出
取最大值时
的取值集合;
(Ⅱ)已知中,角A,B,C的对边分别为a,b,c若
b+c=2。求实数a的取值范围。
已知无穷数列的各项均为正整数,
为数列
的前
项和.
(Ⅰ)若数列是等差数列,且对任意正整数
都有
成立,求数列
的通项公式;
(Ⅱ)对任意正整数,从集合
中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与
一起恰好是1至
全体正整数组成的集合.
(ⅰ)求的值;(ⅱ)求数列
的通项公式.
已知函数,其中
.
(Ⅰ)当时,求曲线
在原点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若在
上存在最大值和最小值,求
的取值范围.
若椭圆的方程为
,
、
是它的左、右焦点,椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点为、
,直线
的方程为
,
是椭圆上任一点,直线
、
分别交直线
于
、
两点,求
的值;
(Ⅲ)过点任意作直线
(与
轴不垂直)与椭圆
交于
、
两点,与
轴交于
点
,
.证明:
为定值.