若椭圆的方程为
,
、
是它的左、右焦点,椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点为、
,直线
的方程为
,
是椭圆上任一点,直线
、
分别交直线
于
、
两点,求
的值;
(Ⅲ)过点任意作直线
(与
轴不垂直)与椭圆
交于
、
两点,与
轴交于
点
,
.证明:
为定值.
姜堰某化学试剂厂以x千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是
千元.
(1)要使生产该产品2小时获得利润不低于30千元,求的取值范围;
(2)要使生产120千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求此最大利润.
已知函数.
(1)当时,用定义证明:
在
上的单调递减;
(2)若不恒为0的函数是奇函数,求实数
的值.
已知函数f(x)=.
(1)写出函数f(x)的单调减区间;
(2)求解方程.
已知全集,集合
.
(1)分别求、
;
(2)求和
.
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数的表达式.
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)