如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
将正方形 和菱形 按照如图所示摆放,顶点 与顶点 重合,菱形 的对角线 经过点 ,点 分别在 上.
(1)求证: ;
(2)若 ,求 的长.
如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是 ,转盘乙上的数字分别是 (规定:指针恰好停留在分界线上,则重新转一次).
(1)转动转盘,转盘甲指针指向正数的概率是_____;转盘乙指针指向正数的概率是_____.
(2)若同时转动两个转盘,转盘甲指针所指的数字记为 ,转盘乙指针所指的数字记为 ,请用列表法或树状图法求满足 的概率.
(1)计算: ;
(2)先化简 ,再求值,其中 .
在平面直角坐标系中,抛物线 (b是常数)经过点(2,0).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形PQMN,PQ=2|m|,且PQ⊥x轴.
(1)求该抛物线对应的函数表达式;
(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连结BC.当BC=4时,求点B的坐标;
(3)若m>0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围;
(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为 时,直接写出m的值.
如图,在▱ABCD中, , ,点M为边AB的中点.动点P从点A出发,沿折线 以每秒 个单位长度的速度向终点B运动,连结PM.作点A关于直线PM的对称点 ,连结 、 .设点P的运动时间为t秒,
(1)点D到边AB的距离为 ;
(2)用含t的代数式表示线段DP的长;
(3)连结 ,当线段 最短时,求 的面积;
(4)当 、 、 三点共线时,直接写出t的值.