已知函数.
(I)若,求函数
的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点
处的切线的倾斜角为
,对于任意的
,函数
是
的导函数)在区间
上总不是单调函数,求
的取值范围。
已知函数的图象经过点
和
,记
(1)求数列的通项公式;
(2)设,若
,求
的最小值;
(3)求使不等式对一切
均成立的最大实数
.
已知函数
(1)求曲线在点
处的切线方程;
(2)若过点可作曲线
的三条切线,求实数
的取值范围.
已知动圆过定点,且与定直线
相切.
(1)求动圆圆心的轨迹的方程;
(2)若是轨迹
的动弦,且
过
, 分别以
、
为切点作轨迹
的切线,设两切线交点为
,证明:
.
如图,己知中,
,
,
且
(1)求证:不论为何值,总有
(2)若求三棱锥
的体积.
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?
组号 |
分组 |
频数 |
频率 |
第1组 |
![]() |
5 |
0.050 |
第2组 |
![]() |
① |
0.350 |
第3组 |
![]() |
30 |
② |
第4组 |
![]() |
20 |
0.200 |
第5组 |
![]() |
10 |
0.100 |
合计 |
100 |
1.000 |
|