一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.
(1)如图(1),两三角尺的重叠部分为△ACM,则重叠部分的面积为 ,
(2)将图(1)中的△MNK绕顶点M逆时针旋转45°,得到图(2),此时重叠部分的面积为 ,
(3)如果将△MNK绕M旋转到不同于图(1)和图(2)的图形,如图(3),请你求此时重叠部分的面积
发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
验证 如, 为偶数.请把 的一半表示为两个正整数的平方和;
探究 设“发现”中的两个已知正整数为 ,请论证“发现”中的结论正确.
某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为 分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.
整式 的值为 .
(1)当 时,求 的值;
(2)若 的取值范围如图所示,求 的负整数值.
已知抛物线 与 轴交于 两点,与 轴交于点 .
(1)求 的值;
(2)如图1,点 是抛物线上位于对称轴右侧的一个动点,且点 在第一象限内,过点 作 轴的平行线交抛物线于点 ,作 轴的平行线交 轴于点 ,过点 作 轴,垂足为点 ,当四边形 的周长最大时,求点 的坐标;
(3)如图2,点 是抛物线的顶点,将 沿 翻折得到 , 与 轴交于点 ,在对称轴上找一点 ,使得 是以 为直角边的直角三角形,求出所有符合条件的点 的坐标.
如图,已知 是 的直径,点 是 上异于 的点,点 是 的中点,连接 ,过点 作 交 的延长线于点 ,交 的延长线于点 , 的平分线 交 于点 ,交 于点 .
(1)求证: 是 的切线;
(2)求 的值;
(3)若 , ,求 的直径.