游客
题文

例:说明代数式的几何意义,并求它的最小值.
解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,
只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,
所以PA′+PB的最小值为线段A′B的长度.为此,构造直角
三角形A′CB,因为A′C=3,CB=3,所以A′B=
即原式的最小值为

根据以上阅读材料,解答下列问题:
(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B       的距离之和.(填写点B的坐标)
(2)求代数式的最小值

科目 数学   题型 解答题   难度 中等
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k= _________ 

如图1,是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)图2中阴影部分的面积为 (m﹣n)2 
(2)观察图2,请你写出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系式: (m﹣n)2+4mn=(m+n)2 
(3)根据(2)中的结论,若x+y=﹣6,xy=2.75,则x﹣y= ±5 
(4)有许多代数恒等式可以用图形的面积来表示.如图3,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2

观察如图图形由左到右的变化,计算阴影部分的面积,并用面积的不同表达形式写出相应的代数恒等式.
 

图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)图②中阴影部分的正方形的边长是 _________ 
(2)请用两种不同的方法求图2中阴影部分的面积:
方法1: _________ 
方法2: _________ 
(3)观察图②,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 _________ 
(4)根据(3)中的等量关系解决如下问题:若m﹣n=﹣5,mn=3,则(m+n)2的值为多少?

通常,我们把长方形和正方形统称为矩形.如图1,是一个长为2a,宽为2b的矩形ABCD,若把此矩形沿图中的虚线用剪刀均分为4块小长方形,然后按照图2的形状拼成一个正方形MNPQ.
(1)分别从整体和局部的角度出发,计算图2中阴影部分的面积,可以得到等式 _________ 
(2)仔细观察长方形ABCD与正方形MNPQ,可以发现它们的 _________ 相同, _________ 不同.(选填“周长”或“面积”)
(3)根据上述发现,猜想结论:用总长为36米的篱笆围成一个矩形养鸡场,可以有许多不同的围法.在你围的所有矩形中,面积最大的矩形的面积是 _________ 2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号