已知点(
,
是常数),且动点
到
轴的距离比到点
的距离小
.
(1)求动点的轨迹
的方程;
(2)(i)已知点,若曲线
上存在不同两点
、
满足
,求实数
的取值范围;
(ii)当时,抛物线
上是否存在异于
、
的点
,使得经过
、
、
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
已知数列满足:
且
.
(Ⅰ)求,
,
,
的值及数列
的通项公式;
(Ⅱ)设,求数列
的前
项和
;
已知斜三棱柱,
,
,
在底面
上的射影恰为
的中点
,又知
.
(Ⅰ)求证:平面
;
(Ⅱ)求到平面
的距离;
(Ⅲ)求二面角的大小。
某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为
,8∶40发出的概率为
;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为
,9∶20发出的概率为
,9∶40发出的概率为
.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)旅客候车时间的分布列;
(3)旅客候车时间的数学期望。
已知函数。
(1)求的对称轴;
(2)在中,已知
,求
。
已知椭圆的左右焦点为
,过点
且斜率为正数的直线
交椭圆
于
两点,且
成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆
交于
两点,求使四边形
的面积最大时的
值。