已知点(
,
是常数),且动点
到
轴的距离比到点
的距离小
.
(1)求动点的轨迹
的方程;
(2)(i)已知点,若曲线
上存在不同两点
、
满足
,求实数
的取值范围;
(ii)当时,抛物线
上是否存在异于
、
的点
,使得经过
、
、
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
如图2-72,棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是B1C1、C1D1的中点
(1)求证:E、F、B、D四点共面;
(2)求四边形EFDB的面积.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
如图所示,已知空间四边形ABCD,E、F分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且,求证直线EF、GH、AC交于一点.
如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.
如图所示,三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行.