已知椭圆的左右焦点为
,过点
且斜率为正数的直线
交椭圆
于
两点,且
成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆
交于
两点,求使四边形
的面积最大时的
值。
已知函数,
(1)求的最小值;
(2)若对所有都有
,求实数
的取值范围.
(本题满分12分)
某商店经销一种洗衣粉,年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为包,已知每次进货的运输劳务费为62.5元,全部洗衣粉一年的保管费为1.5
元.
(1)将该商店经销洗衣粉一年的利润(元)表示为每次进货量
(包)的函数;
(2)为使利润最大,每次应进货多少包?
(本小题满分14分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD
所在的平面和圆O所在的平面互相垂直,且,
.
(1)求证:平面
;
(2)设FC的中点为M,求证:∥平面
;
(3)求三棱锥F-CBE的体积.
(本小题满分14分)
已知向量,
,函数
.
(1)求函数的解析式;
(2)当时,求
的单调递增区间;
(3)说明的图象可以由
的图象经过怎样的变换而得到.
.(本小题满分12分)
已知集合,
,
(1)在区间上任取一个实数
,求“
”的概率;
(2)设为有序实数对,其中
是从集合
中任取的一个整数,
是从集合
中任取的一个整数,求“
”的概率.