已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量并有特征值λ2=-1及属于特征值-1的一个特征向量
(1)求矩阵M.(2)求M5α.
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).
(1)求sin 2α-tan α的值;
(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f
-2f2(x)在区间
上的值域.
函数f(x)=Asin(ωx+φ) 的部分图像如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈时,求f(x)的取值范围.
设函数f(x)=sin x+sin.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)不画图,说明函数y=f(x)的图像可由y=sin x的图像经过怎样的变化得到.
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.
(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.
如图,在四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)已知二面角APBD的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.