如图,BC是⊙O的弦,OD⊥BC于E,交于D,点A是优弧
上的动点(不与B、C重合),BC=
,ED=2.
(1)求⊙O的半径;
(2)求cos∠A的值及图中阴影部分面积的最大值.
如图,△ ABC内接于⊙ O, BC=2, AB= AC,点 D为 上的动点,且cos∠ ABC= .
(1)求 AB的长度;
(2)在点 D的运动过程中,弦 AD的延长线交 BC延长线于点 E,问 AD• AE的值是否变化?若不变,请求出 AD• AE的值;若变化,请说明理由;
(3)在点 D的运动过程中,过 A点作 AH⊥ BD,求证: BH= CD+ DH.
某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6, CE=12,∠ FCE=45°,以点 C为圆心,以任意长为半径作 ,再分别以点 A和点 D为圆心,大于 AD长为半径作弧,交 EF于点 B, AB∥ CD.
(1)求证:四边形 ACDB为△ FEC的亲密菱形;
(2)求四边形 ACDB的面积.
某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
频数 |
频率 |
|
体育 |
40 |
0.4 |
科技 |
25 |
a |
艺术 |
b |
0.15 |
其它 |
20 |
0.2 |
请根据上图完成下面题目:
(1)总人数为 人, a= , b= .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
如图,在四边形 ABCD中,∠ B=60°,∠ D=30°, AB= BC.
(1)求∠ A+∠ C的度数;
(2)连接 BD,探究 AD, BD, CD三者之间的数量关系,并说明理由;
(3)若 AB=1,点 E在四边形 ABCD内部运动,且满足 AE 2= BE 2+ CE 2,求点 E运动路径的长度.