如图,已知椭圆
的方程为
,双曲线
的两条渐近线为
、
.过椭圆
的右焦点
作直线
,使
,又
与
交于点
,设
与椭圆
的两个交点由上至下依次为
、
.
(1)若
与
的夹角为
,且双曲线的焦距为
,求椭圆
的方程;
(2)求
的最大值.
设函数
.
(1)对于任意实数
,
恒成立,求
的最大值;
(2)若方程
有且仅有一个实根,求
的取值范围.
已知函数
是定义在
上的奇函数,当
时,
,且
。
(1)求
的值,(2)求
的值.
已知命题p:“
x∈[1,2],2x2-a≥0”,命题q:“
x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围。
已知全集
R,
,
.
(1)

;
(2)若不等式
的解集为
,求
、
的值
设函数f(x)=lnx-ax+
-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<
时, 求函数f(x)的单调区间;
(3) 当a=
时, 设函数g(x)=x2-2bx-
, 若对于
x1∈
,
[0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<
+1).