山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
(本题6分)你能把如图①所示的长方形分成2个全等图形吗?把如图②所示的三角形分成3个全等三角形吗?把如图③所示的长方形分成4个全等三角形吗?
(本题3分)如图,在网格纸上,画出所给图形关于直线l对称的图形.
下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在空白处填上恰当的图形.
(本题8分)从2开始,连续的偶数相加,它们的和的情况如下表:
加数m的个数 |
和(S) |
1 |
2=1×2 |
2 |
2+4=6=2×3 |
3 |
2+4+6=12=3×4[ |
4 |
2+4+6+8=20=4×5 |
5 |
2+4+6+8+10=30=5×6 |
—— |
—— |
(1)按这个规律,当m=6时,和为_______;
(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为:
__________________________________________.
(3)应用上述公式计算:
①2+4+6+…+200②202+204+206+…+300
(本题10分)已知A、B在数轴上分别表示a,b.
(1)对照数轴填写下表:
a |
6 |
-6 |
-6 |
-6 |
2 |
-1.5 |
b |
4 |
0 |
4 |
-4 |
-10 |
-1.5 |
A、B两点的距离 |
(2)若A、B两点间的距离记为d,试问:d和a,b有何数量关系?
(3)在数轴上标出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和;
(4)找出(3)中满足到10和-10的距离之差大于1而小于5的整数的点P;
(5)若点C表示的数为x,当点C在什么位置时,取得的值最小?