张大伯计划建一个面积为72平方米的矩形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分(包括中间的隔墙)用30米的竹篱笆围成,如图.
(1)请你通过计算帮助张大伯设计出围养鸡场的方案.
(2)在上述条件不变的情况下,能围出比72平方米更大的养鸡场吗?请说明理由.
如图,已知:AB,CD交于点O,CA=CO,BO=BD,点Q是BC的中点,点E,F分别是OA,OD的中点,连接QE,QF,试探讨QE,QF的大小关系,并说明理由
如图,在△ABC中,点D,E,F分别在BC,AB,AC 边上,且DE∥AC,DF∥AB.
(1)如果∠BAC=90°,那么四边形AEDF是形;
(2)如果AD是△ABC的角平分线,那么四边形AEDF是形;
(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是形,证明你的结论(仅需证明第⑶题结论).
如图,点C在BD上,在线段BD的同侧作等边△ABC和等边△CDE,AD、BE相交于点F.
(1)求证:BE=AD;
(2)求∠AFB的度数;
(3)设BE与AC交于点M,CE与AD交于点N,连接MN,试判断△MCN的形状,并说明理由.
如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
求证:(1)∠EDC=∠ECD;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数.