如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.
(1)填空:∠APC= 度,∠BPC= 度;
(2)求证:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面积.
如图,在正方形ABCD中,E为边AD的中点,且DF:CF=1:3,连接EF并延长交BC的延长线于点G,
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
解方程:
(1)
(2)
如图1,四边形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=,BC=5
,动点P从点D出发,以1cm/s的速度沿DB方向运动,动点Q也从点D出发,以
/
的速度沿DC方向运动,P,Q两点同时出发,当点Q到达点C时停止运动,点P也随之停止,设运动时间为
(
>0).
(1)求线段DB的长;
(2)请判断PQ与BC的位置关系,并加以证明;
(3)伴随P,Q两点的运动,将△DPQ绕点P旋转,得到△PMN,点M落在线段PQ上,若△PMN
与△DBC的重叠部分的图形周长为y,
①请求出y与之间的函数关系式,并指出自变量
的取值范围;
②求出当4<y≤5时的取值范围.
如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,
(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?
某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.
(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);
(2)求小明到达点F时的影长FH的长.