如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长.
某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为 、 、 、 、 ,由调查所得数据绘制了如图所示的不完整的统计图表.
类别 |
频率 |
|
|
|
0.35 |
|
0.20 |
|
|
|
0.05 |
(1)求本次调查的小型汽车数量及 , 的值;
(2)补全频数分布直方图;
(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.
已知,如图, , , , ,求证: .
化简: .
计算: .
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左侧),点 、 在抛物线上, 的平分线 交 于点 ,点 是 的中点,已知 ,且 .
(1)求抛物线的解析式;
(2) 、 分别为 轴, 轴上的动点,顺次连接 、 、 、 构成四边形 ,求四边形 周长的最小值;
(3)在 轴下方且在抛物线上是否存在点 ,使 中 边上的高为 ?若存在,求出点 的坐标;若不存在,请说明理由;
(4)矩形 不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点 、 ,且直线 平分矩形的面积时,求抛物线平移的距离.