已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.(Ⅰ)求椭圆的方程;(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
设函数,. (1)若,求的最大值及相应的的取值集合; (2)若是的一个零点,且,求的值和的最小正周期.
已知椭圆的右焦点为,离心率,是椭圆上的动点. (1)求椭圆标准方程; (2)若直线与的斜率乘积,动点满足,(其中实数为常数).问是否存在两个定点,使得?若存在,求的坐标及的值;若不存在,说明理由.
已知函数. (1)当时,求的极值; (2)若对恒成立,求实数的取值范围.
如图,已知长方形中,, ,为的中点.将沿折起,使得平面平面. (1)求证:; (2)若点是线段的中点,求二面角的余弦值.
在锐角中,分别为角所对的边,且 (1)试求角的大小; (2)若,且的面积为,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号