设函数,若
时,
有极小值
,
(1)求实数的取值;
(2)若数列中,
,求证:数列
的前
项和
;
(3)设函数,若
有极值且极值为
,则
与
是否具有确定的大小关系?证明你的结论.
已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.
已知命题“若
则二次方程
没有实根”.
(1)写出命题的否命题; (2)判断命题
的否命题的真假, 并证明你的结论
如图,四棱锥的底面是正方形,
,点E在棱PB上.
(1)求证:平面;
(2)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
正方体ABCD-A1B1C1D1中,M,N分别是AB,A1D1的中点.
求证:MN∥平面BB1D1D.