已知直线的参数方程为
(t为参数),曲线C的参数方程为
(
为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线
的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.
设函数f(x)=sin(x-
)-2cos2
x+1
(1)求f(x)的最小正周期
(2)若函数y=g(x)与f(x)的图象关于直线x=1对称,求当x∈[0,]时,y=g(x)的最大值
已知函数,
(1)求在x=1处的切线斜率的取值范围;
(2)求当在x=1处的切线的斜率最小时,
的解析式;
(3)在(Ⅱ)的条件下,是否总存在实数m,使得对任意的,总存在
,使得
成立?若存在,求出实数m的取值范围;若不存在,说明理由.
数列的前
项和为
,数列
的前
项的和为
,
为等差数列且各项均为正数,
,
,
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,
,
成等比数列,求
.
如图,正方形
和
的边长均为1,且它们所在平面互相垂直,
为线段
的中点,
为线段
的中点。
(1)求证:∥面
;
(2)求证:平面⊥平面
;
(3)求直线与平面
所成角的正切值.
在中,
是角
所对的边,已知
.
(Ⅰ)求角的大小;
(Ⅱ)若的面积为
,求
的值.