已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且
(O为坐标原点),求实数k的范围.
计算以下式子的值:
(1);
(2).
设函数.
(Ⅰ)当时,求函数
的图象在点
处的切线方程;
(Ⅱ)已知,若函数
的图象总在直线
的下方,求
的取值范围;
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线
的极坐标方程为
.
(1)把直线的极坐标方程化为直角坐标系方程;
(2)已知为椭圆
上一点,求
到直线
的距离的最大值。
如图,△是等边三角形,
,
,
,
,
分别是
,
,
的中点,将△
沿
折叠到
的位置,使得
.
(1)求证:平面平面
;
(2)求证:平面
.
在直角坐标系中,直线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
为极轴,且长度单位相同,建立极坐标系,得曲线
的极坐标方程为
.
(1)求直线的倾斜角;
(2)若直线与曲线
交于
两点,求AB的距离.