游客
题文

(本小题满分12分)已知椭圆的离心率为在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知,设:函数上单调递减;:函数上为增函数.
(1)若为真,为假,求实数的取值范围;
(2)若“”为假,“”为真,求实数的取值范围.

在锐角中,角,,对应的边分别是,,.已知.
(1)求角的大小;
(2)若的面积,,求的值.

(1)平面过坐标原点是平面的一个法向量,求到平面的距离;
(2)直线,是直线的一个方向向量,求到直线的距离.

已知数列的相邻两项是关于方程的两根,且.
(1)求证:数列是等比数列;
(2)求数列的前项和
(3)设函数,若对任意的都成立,求实数的取值范围.

某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号