游客
题文

为了探索代数式的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于      ,此时       ;
(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线过点、点,且与轴的另一交点为,其中>0,又点是抛物线的对称轴上一动点.
(1)求点的坐标,并在图1中的上找一点,使到点与点的距离之和最小;
(2)若△周长的最小值为,求抛物线的解析式及顶点的坐标;
(3)如图2,在线段上有一动点以每秒2个单位的速度从点向点移动(不与端点重合),过点轴于点,设移动的时间为秒,试把△的面积表示成时间的函数,当为何值时,有最大值,并求出最大值.

(本小题满分10分)在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△A1B1C

(1)如图1,当ABCB1时,设A1B1BC相交于点D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1BB1,设△ACA1和△BCB1的面积分别为S1S2
求证:S1S2=1∶3;
(3)如图3,设AC的中点为EA1B1的中点为PACa,连接EP.当等于多少度时,EP的长度最大,最大值是多少?

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.
(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

(本小题满分10分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.

(本题满分10分)如图,已知CD是⊙O的直径,ACCD,垂足为C,弦DEOA,直线AECD相交于点B

(1)求证:直线AB是⊙O的切线.
(2)当AC=1,BE=2时,求tanOAC的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号