已知圆,直线
,以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系.
(1)将圆C和直线方程化为极坐标方程;
(2)P是上的点,射线OP交圆C于点R,又点Q在OP上且满足
,当点P在
上移动时,求点Q轨迹的极坐标方程.
(本题10分)已知函数
(1)判断函数的单调性,并证明;
(2)求函数的最大值和最小值.
(本题10分)设,
(1)在下列直角坐标系中画出的图象;
(2)若,求
值.
(本题10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围构成的集合.
首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足an+1bn- anbn+1=2bn+1bn.
(1)令cn=,求证:数列{cn}是等差数列;
(2)若bn=3n-1,求数列{an}的前n项和Sn.
等差数列{an}的公差d为整数,已知a1=10,且a4≥0,a5≤0,
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.