将绕点
按逆时针方向旋转,旋转角为
,旋转后使各边长变为原来的
倍,得到
,我们将这种变换记为[
].
(1)如图①,对作变换[
]得
,则
:
= ___;直线
与直线
所夹的锐角为 __ °;
图①
(2)如图②,中,
,对
作变换[
]得
,使得四边形
为梯形,其中
∥
,且梯形
的面积为
,求
和
的值.
图②
如图,抛物线与x轴交于点A,B,与
轴交于点C。过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-1,0)。
(1)求该抛物线的解析式;
(2)求梯形COBD的面积。
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”
(1)请用直尺与圆规画一个“好玩三角形”;
(2)如图1,在Rt△ABC中,∠C=90°,,求证:△ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a, ∠ABC=2β,点P,Q从点A同时出发,以相同的速度分别沿折线AB-BC和AD-DC向终点C运动,记点P所经过的路程为s
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”?请直接写出tanβ的取值范围。
(4)本小题为选做题
依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是“好玩三角形”的个数关系”的真命题(“好玩三角形”的个数限定不能为1)。
如图1,已知直线与y轴交于点A,抛物线
经过点A,其顶点为B,另一抛物线
的顶点为D,两抛物线相交于点C
(1)求点B的坐标,并说明点D在直线的理由;
(2)设交点C的横坐标为m
①交点C的纵坐标可以表示为:或,由此请进一步探究m关于h的函数关系式;
②如图2,若,求m的值
如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
求证:(1)∠1=∠2(2)DG=B′G
有一学校为了了解九年级学生某次体育的测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在的扇形圆心角为36°
组别 |
成绩 |
频数 |
A |
20<x≤24 |
2 |
B |
24<x≤28 |
3 |
C |
28<x≤32 |
5 |
D |
32<x≤36 |
b |
E |
36<x≤40 |
20 |
合计 |
a |
根据上面图表提供的信息,回答下列问题:
(1)计算频数分布表中a与b的值;
(2)根据C组28<x≤32的组中值为30,估计C组中所有数据的和为;
(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数)