2013年9月20日是第25个全国爱牙日。某区卫生部门成立了调查小组,调查 “常吃零食与患龋齿的关系”,对该区六年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.
![]() |
0.010 |
0.005 |
0.001 |
![]() |
6.635 |
7.879 |
10.828 |
(1)能否在犯错概率不超过0.001的前提下,认为该区学生的常吃零食与患龋齿有关系?
(2)4名区卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
附:
给出下列两个条件:(1)f(+1)=x+2
;
(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式.
1.(北京市西城外语学校·2010届高三测试)设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列满足
,且
,数列
满足
①求数列通项公式。
②求数列的前n项和Tn的最小值及相应的n的值.
(北京市西城外语学校·2010届高三测试)已知等差数列{an}中,a2=6,a5=15.若bn=a2n ,求数列{bn}的前5项和。
(河南省许昌平顶山·2010届高三调研){an}是等差数列,a1>0,a2009+a2010>0,a2009·a2010<0,使前n项和Sn>0成立的最大自然数n。
图2-4-1是一个计算装置示意图,J1、J2是数据入口,C是计算结果的出口,计算过程是由J1,J2分别输入自然数m和n,经过计算后得自然数k由C输出,此种计算装置完成的计算满足以下三个性质:
①若J1、J2分别输入1,则输出结果1;
②若J1输入任何固定自然数不变,J2输入自然数增大1,则输出结果比原来增大2;
③若J2输入1,J1输入自然数增大1,则输出结果为原来的2倍.
试问:(1)若J1输入1,J2输入自然数n,则输出结果为多少?
(2)若J2输入1,J1输入自然数m,则输出结果为多少?
(3)若J1输入自然数m,J2输入自然数n,则输出结果为多少?
图2-4-1