称满足以下两个条件的有穷数列为
阶“期待数列”:
①;②
.
(1)若数列的通项公式是
,
试判断数列是否为2014阶“期待数列”,并说明理由;
(2)若等比数列为
阶“期待数列”,求公比q及
的通项公式;
(3)若一个等差数列既是
阶“期待数列”又是递增数列,求该数列的通项公式;
在等比数列{}中,
,公比
,且
,
与
的等比中项为2.
(1)求数列{}的通项公式;
(2)设,数列{
}的前
项和为
,当
最大时,求
的值.
如图,设是单位圆和
轴正半轴的交点,
是单位圆上的两点,
是坐标原点,
,
.
(1)若,求
的值;
(2)设函数,求
的值域.
(文)已知函数(b、c为常数).
(1)若在
和
处取得极值,试求
的值;
(2)若在
、
上单调递增,且在
上单调递减,又满足
,求证:
.
(本小题满分12分)
已知函数,x∈R(ω>0),
在y轴右侧的第一个最高点的横坐标为.
(1)求ω;
(2)若将函数f(x)的图象向右平移个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.
(本小题满分12分)
已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值;
(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.