已知直线经过直线
与直线
的交点
,且垂直于直线
.
(1)求直线的方程;
(2)求直线关于原点
对称的直线方程.
(本小题满分12分)
从集合的所有非空子集中,等可能地取出一个.
(1)记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;
(2)记所取出的非空子集的元素个数为,求
的分布列和数学期望E
.
(本小题满分12分)
数列中,
,且点
在直线
上.
(Ⅰ)设,求证:
是等比数列;
(Ⅱ)设,求
的前
项和.
(本题满分12分)
已知函数.
(1)求在
上的最大值;
(2)若对任意的实数,不等式
恒成立,求实数
的取值范围;
(3)若关于的方程
在
上恰有两个不同的实根,求实数
的取值范围.
(本题满分12分)
已知点都在直线
上,
为直线
与
轴的交点,数列
成等差数列,公差为1.(
)
(1)求数列,
的通项公式;
(2)求证:…… +
(
2,
)
(本题满分12分)
在中,内角
对边的边长分别是
,已知
,
.
(Ⅰ)若的面积等于
,求
;
(Ⅱ)若,求
的面积.