如图,已知圆,点
.
(1)求圆心在直线上,经过点
,且与圆
相外切的圆
的方程;
(2)若过点的直线
与圆
交于
两点,且圆弧
恰为圆
周长的
,求直线
的方程.
一个袋中有1个白球和4个黑球,每次从中任取一个球,每次所取的球放回,直到取得白球为止,但摸球次数不超过5次,求取球次数的分布列
将3个小球任意地放入4个玻璃杯中,杯子中球的最多个数为,求
的分布列.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立。该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率.
(
已知三个函数其中第二个函数和第三个函数中的
为同一个常数,且
,它们各自的最小值恰好是方程
的三个根.
(Ⅰ) 求证:;
(Ⅱ) 设是函数
的两个极值点,求
的取值范围.
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.