某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示
和用
表示
的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
设集合,
,则
的子集的个数是()
A.4 | B.3 | C.2 | D.1 |
(本小题满分14分)
设是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(1)证明:为等比数列;
(2)设,求数列
的前
项和.
(本小题满分14分)
已知A(1,1)是椭圆=1(
)上一点,
是椭圆的两焦点,且满足
.
(1)求椭圆的标准方程;
(2)设点是椭圆上两点,直线
的倾斜角互补,求直线
的斜率.
(本小题满分13分)
设函数.
(1)若曲线在点
处与直线
相切,求
的值;
(2)求函数的单调区
间与极值点.
(本小题满分13分)
如图,平行四边形中,
,
,且
,正方形
所在平面与平面
垂直,
分别是
的中点.
(1)求证:
;
(2)求证:平面
;
(3)求三棱锥的体积.