画图:
(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;
(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.
(ⅰ)在图1中,画出△ABC的三条高的交点;
(ⅱ)在图2中,画出△ABC中AB边上的高.
如图,△是等边三角形,点
坐标为(-8,0)、点
坐标为(8,0),点
在
轴的正半轴上.一条动直线从
轴出发,以每秒1个单位长度的速度沿
轴向右平移,直线与直线
交于点
,与线段
交于点
.以
为边向左侧作等边△
,
与
轴的交点为
.当点
与点
重合时,直线停止运动,设直线的运动时间为(秒).
(1)填空:点的坐标为,四边形
的形状一定是;
(2)试探究:四边形能不能是菱形?若能,求出相应的的值;若不能,请说明理由.
(3)当t为何值时,点恰好落在以
为直径的⊙
上?并求出此时⊙
的半径.
甲、乙两辆汽车同时分别从、
两城沿同一条高速公路匀速驶向
城.已知
、
两城的距离为450千米,
、
两城的距离为400千米,乙车比甲车的速度每小时慢10千米,结果两辆车同时到达
城.设甲车的速度为每小时
千米.
(1)根据题意填写下表(用含的代数式表示):
行驶的路程(千米) |
速度(千米/时) |
所需时间(小时) |
|
甲车 |
450 |
![]() |
|
乙车 |
400 |
(2)求甲、乙两车的速度.
如图,四边形为正方形,点
在
轴上,点
在
轴上,且
,
,反比例函数
在第一象限的图像经过正方形的顶点
.
(1)求反比例函数的关系式;
(2)将正方形沿
轴向左平移个单位长度时,点
恰好落在反比例函数的图像上.
某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示).
根据图表解答下列问题:
(1)在统计表中,的值为,
的值为,并将统计图补充完整(温馨提示:作图时别忘了用黑色签字笔涂黑);
(2)这个样本数据的中位数落在第组;
(3)若七年级男生个人一分钟跳绳次数≥130时成绩为优秀,该校七年级入学时男生共有150人,请估计该校七年级男生个人一分钟跳绳成绩为优秀的人数.
一个盒子中装有4张形状大小都相同的卡片,卡片上的编号分别为1、、
、
,现从盒子中随机抽取一张卡片,将其编号记为
,再从剩下的三张中任取一张,将其编号记为
,这样就确定了点
的一个坐标,记为
.
(1)求第一次抽到编号为的概率;
(2)请用树状图或列表法,求点在第四象限的概率.