如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)若∠BAC=30°,求证:CD平分OB.
(2)若点E为的中点,连接0E,CE.求证:CE平分∠OCD.
(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.
如图,二次函数的图象与
轴交于B、C两点(点B在点C的左侧),一次函数
的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),
.
(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的
倍,求点M的坐标.
已知:如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在DE上且DF=DC,DG⊥CF于G. DH平分∠ADE交CF于点H,连接BH.
(1)若DG=2,求DH的长;
(2)求证:BH+DH=CH.
某蔬菜店第一次用800元购进某种蔬菜,由于销售状况良好,该店又用1400元第二次购进该品种蔬
菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.
(1)第一次所购该蔬菜的进货价是每千克多少元?
(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有3% 的损耗,第二次购进的蔬菜有5% 的损耗,若该蔬菜店售完这些蔬菜获利不低于1244元,则该蔬菜每千克售价至少为多少元?
为调动学生学习积极性,某中学初一(1)班对学生的学习表现实行每学月评分制,现对初一上期1—5学月的评分情况进行了统计,其中学生小明5次得分情况如下表所示:
时间 |
第1学月 |
第2学月 |
第3学月 |
第4学月 |
第5学月 |
得分 |
8分 |
9分 |
9分 |
9分 |
10分 |
学生小刚的得分情况制成了如下不完整的折线统计图:
(1)若小刚和小明这5次得分的平均成绩相等,求出小刚第3学月的得分.
(2)在图中直接补全折线统计图;
(3)据统计,小明和小刚这5学月的总成绩都排在了班级的前4名,现准备从该班的前四名中任选两名同学参加学校的表彰大会,请用列表或画树状图的方法,求选取的两名同学恰好是小明和小刚两人的概率.
先化简,再求值:,其中
为不等式组
的整数解.