已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线
=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
。
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。
(本小题满分14分)设A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与轴正半轴的交点,
为等腰直角三角形。记
(1)若A点的坐标为,求
的值
(2)求的取值范围.
本小题满分14分)若不等式对
恒成立,求
的最小值.
.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40°
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE
(3)求二面角F—BD—A的大小。
在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=A,AB=2,以AC的中点O为球心、AC为直径的球面交PD于点M。
(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成的角的大小;