已知函数(
为常数),其图象是曲线
.
(1)当时,求函数
的单调减区间;
(2)设函数的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
设函数
(1)求函数g(x)的极大值
(2)求证
(3)若,曲线y=
与 y=
是否存在公共点,若存在公共点,在公共点处是否存在公切线,若存在,求出公切线方程,若不存在,说明理由。
已知函数
(1)若函数y=在(-1,1)内是减函数,求
的取值范围
(2)若函数y=在(-1,1)内有且只有一个极值点,求
的取值范围
已知偶函数定义域为[-3,3],函数
在[-3,0]上为增函数,求满足
的x的集合.
已知△ABC的面积S满足
(1)求角B的取值范围;
(2)求函数的值域。
在△ABC中,角A,B,C所对的边分别为a,b,c,向量=(sinB+sinC,sinA-sinB),
= (sinB-sinC,sin(B+C)),且
⊥
(1)求角C的大小;
(2)若sinA=,求cosB的值。