如图,现要在边长为的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.
(1)求的取值范围;(运算中
取
)
(2)若中间草地的造价为元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
设的极小值为
,其导函数
的图像经过点
,如图所示,
(1)求的解析式;
(2)若对都有
恒成立,
求实数的取值范围。
如图,正三棱柱的底面边长为
,侧棱长为
,点
在棱
上.
(1)若,求证:直线
平面
;
(2)是否存在点,使平面
⊥平面
,若存在,请确定点
的位置,若不存在,请说明理由;
(3)请指出点的位置,使二面角
平面角的大小为
.
箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为的卡片反面标的数字是
(卡片正反面用颜色区分).
(1)如果任意取出一张卡片,试求正面数字大于反面数字的概率;
(2)如果同时取出两张卡片,试求他们反面数字相同的概率.
内接于以O为圆心,1为半径的圆,且
.
(1)求数量积,
,
;
(2)求的面积.
已知函数f(x)=(x2+)(x+a)(a
R).(1)若函数f(x)的图象上有与x轴平行的切线,求a的范围;(2)若
(-1)=0,(I)求函数f(x)的单调区间;(II)证明对任意的x1、x2
(-1,0),不等式|f(x1)-f(x2)|<
恒成立.