旅游公司为3个旅游团提供4条旅游线路,每个旅游团任选其中一条.
(Ⅰ)求3个旅游团选择3条不同的线路的概率;
(Ⅱ)求选择甲线路旅游团数的分布列和期望.
如图,椭圆C:+
=1(a>b>0)的长轴长为4,不过原点O的斜率为﹣
的直线l与椭圆C相交于A、B两点,已知点P(2,1)且直线OP平分线段AB.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△OAB面积取最大值时直线l的方程.
如图所示,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,SA⊥平面ABCD,且AD∥BC,AB⊥AD,BC=2AD=2,AB=AS=.
(Ⅰ)求证:SB⊥BC;
(Ⅱ)求点A到平面SBC的距离;
(Ⅲ)求面SAB与面SCD所成二面角的大小.
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族 的人数 |
占本组 的频率 |
1 |
[25,30) |
120 |
0.6 |
2 |
[30,35) |
195 |
P |
3 |
[35,40) |
100 |
0.5 |
4 |
[40,45) |
a |
0.4 |
5 |
[45,50) |
30 |
0.3 |
6 |
[50,55) |
15 |
0.3 |
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
已知,分别求f(0)+f(1),f(﹣1)+f(2),f(﹣2)+f(3),然后归纳猜想一般性结论,并证明你的结论.
若数列满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前项积为
,即
,求
;
(3)在(2)的条件下,记,求数列
的前
项和
,并求使
的
的最小值.