在平面直角坐标系中,已知过点
的椭圆
:
的右焦点为
,过焦点
且与
轴不重合的直线与椭圆
交于
,
两点,点
关于坐标原点的对称点为
,直线
,
分别交椭圆
的右准线
于
,
两点.
(1)求椭圆的标准方程;
(2)若点的坐标为
,试求直线
的方程;
(3)记,
两点的纵坐标分别为
,
,试问
是否为定值?若是,请求出该定值;若不是,请说明理由.
已知数列满足
,且
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
;
(3)设,记
,证明:
.
已知椭圆(a>b>0)的离心率为
,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+
相切.
(1)求椭圆的方程;
(2)设直线与椭圆在
轴上方的一个交点为
,
是椭圆的右焦点,试探究以
为
直径的圆与以椭圆长轴为直径的圆的位置关系.
已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.
我区高三期末统一测试中某校的数学成绩分组统计如下表:
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(1)求出表中、
、
、
的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;
(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;
(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分
的概率.
已知函数.
求函数的最小正周期和值域;
若是第二象限角,且
,试求
的值.