某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
如图,在四棱锥中,底面是边长为的正方形,,且点满足. (1)证明:平面. (2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .
求函数的最小正周期和最小值;并写出该函数在上的单调递增区间.
已知集合,,且,求
已知函数(为常数),函数定义为:对每一个给定的实数, (1)求证:当满足条件时,对于,; (2)设是两个实数,满足,且,若,求函数在区间上的单调递增区间的长度之和.(闭区间的长度定义为)
已知且,函数,,记 (1)求函数的定义域及其零点; (2)若关于的方程在区间内仅有一解,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号